Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway
نویسندگان
چکیده
Glioblastomas are the most common primary and malignant brain tumors. The standard therapy includes surgery and radiotherapy plus chemotherapy, with additional bevacizumab to block the angiogenesis in tumors. However, the ever-growing tolerance of glioblastomas to chemotherapeutic drugs impairs the clinical outputs of tumor treatment. The present study investigated the tolerance of glioblastomas to bevacizumab. Although bevacizumab resulted in direct anti-proliferation and pro-apoptosis effects on glioblastoma cells via downregulating the anti-apoptotic proteins and upregulating the pro-apoptotic proteins, tolerance was also encountered that was mainly caused by autophagy induction in tumor cells. The suppressed Akt-mTOR signaling pathway led to the upregulated autophagy process. Blockade of the autophagy process significantly increased the tumor-suppressive effect of bevacizumab on glioblastoma cells. To our knowledge, the present study is the first to report the involvement of autophagy in the tolerance of glioblastomas to bevacizumab. Therefore, autophagy inhibition may be considered a novel way to overcome the tolerance of glioblastomas to anti-angiogenic agents.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملThe Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملPI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy
Endometrial cancer (EC) is now one of the most common malignant tumors in young women. In all, 90% of young patients with EC have a high expression of progesterone recep tor, can be treated with progestin, and have very good prognosis. However, some of the young EC patients are resistant to progestin, the mechanism of which is unclear. To illuminate the mechanism by which endometrial cells acqu...
متن کاملData analyses of honokiol-induced autophagy of human glioma cells in vitro and in vivo
This article contains raw and processed data related to a research, "Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway" (C.J. Lin, T.L. Chen, Y.Y. Tseng, G.J. Wu, M.H. Hsieh, Y.W. Lin, R.M. Chen, 2016) [1]. Data were obtained by immunoblotting analyses of light chain 3 (LC3)-II, beclin-1, Akt...
متن کامل